org.jscience.mathematics.analysis.polynomials
Class OrthogonalExactRealPolynomialFactory

java.lang.Object
  extended by org.jscience.mathematics.analysis.polynomials.OrthogonalExactRealPolynomialFactory
All Implemented Interfaces:
OrthogonalPolynomialFactory

public abstract class OrthogonalExactRealPolynomialFactory
extends java.lang.Object
implements OrthogonalPolynomialFactory

This class is the base class to generate orthogonal polynomials.


Constructor Summary
OrthogonalExactRealPolynomialFactory()
          Simple constructor.
 
Method Summary
abstract  Polynomial[] getFirstTermsPolynomials()
          Initialize the recurrence coefficients for degree 0 and 1.
abstract  DoublePolynomial getOrthogonalPolynomial(int degree)
          DOCUMENT ME!
protected  ExactReal[] getOrthogonalPolynomialCoefficients(int degree)
          DOCUMENT ME!
abstract  Field.Member[] getRecurrenceCoefficients(int k)
          Initialize the recurrence coefficients.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

OrthogonalExactRealPolynomialFactory

public OrthogonalExactRealPolynomialFactory()
Simple constructor.

Method Detail

getOrthogonalPolynomial

public abstract DoublePolynomial getOrthogonalPolynomial(int degree)
DOCUMENT ME!

Specified by:
getOrthogonalPolynomial in interface OrthogonalPolynomialFactory
Parameters:
degree - DOCUMENT ME!
Returns:
DOCUMENT ME!

getOrthogonalPolynomialCoefficients

protected ExactReal[] getOrthogonalPolynomialCoefficients(int degree)
DOCUMENT ME!

Parameters:
degree - DOCUMENT ME!
Returns:
DOCUMENT ME!

getFirstTermsPolynomials

public abstract Polynomial[] getFirstTermsPolynomials()
Initialize the recurrence coefficients for degree 0 and 1.

Specified by:
getFirstTermsPolynomials in interface OrthogonalPolynomialFactory
Returns:
an array which contains the coefficients for degree 0 and 1

getRecurrenceCoefficients

public abstract Field.Member[] getRecurrenceCoefficients(int k)
Initialize the recurrence coefficients. The recurrence relation is
a1k Ok+1(X) = (a2k + a3k X) Ok(X) - a4k Ok-1(X)

Specified by:
getRecurrenceCoefficients in interface OrthogonalPolynomialFactory
Parameters:
k - index of the current step
Returns:
a double array of 3 elements: b2k = double[0] coefficient to initialize (b2k = a2k / a1k) b3k = double[1] coefficient to initialize (b3k = a3k / a1k) b4k = double[2] coefficient to initialize (b4k = a4k / a1k)